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Abstract

Distributed search algorithms are crucial in dealing with large opti-
mization problem, particularly when a centralized approach is not
only impractical but infeasible. Many machine learning concepts
have been applied to search algorithms in order to improve their
effectiveness [4, 13, 19J. In this article we present an algorithm that
blends Reinforcement Learning (RL) and hill climbing directly, by
using the RE signal to guide the exploration step of a hill climbing
algorithm. We apply this algorithm to the domain of a constel-
lations of communication satellites where the goal is to minimize
the loss of importance weighted data. We introduce the concept

of "'ghost" traffic, where correctly setting this traffic induces the
satellites to act to optimize the world utility. Our results indicated

that the bi-utility search introduced in this paper outperforms both
traditional hill climbing algorithms and distributed RL approaches
such as team games.

1 Introduction

Many NASA projects under consideration involve constellations of data-
communication relay satellites. In such a constellation, each satellite receives some
amount of data at each time step (e.g., uplink from Earth or Mars, depending on
where they are orbiting), and needs to relay this data back to an ultimate destina-
tion (e.g., Earth) with minimal loss. Although each satellite may have a direct link
to the ultimate destination at particular times, because of various limitations (e.g.,
storage, power, bandwidth), it may still be preferable to route the data across other
satellites in the networks. Furthermore, the data is likely to have different levels

of importance, and the routing algorithm needs to account for that possibility. For
such problems, a suitable utility function to minimize is the total loss of importance
weighted data across the network.



m a singb'r.imestep.respectivply.WerepresentEarth;Ls a "N)ecial" ._at,,llite so

wir.h r0 = re. At each time stelJ t , _u'w data gut ¢)f importance j is introduced to
the system at sat,(,llit,, i (this corresponds to the uph)a(ling of data from e.g. the

surface of M.u's). W,: sum the .'l,)t's over j and add this total to the total atnount
of data sent to sat(,llite i from all other satelliu,s to give the tol:al influx of data .ca
at this tim_, st('p. If r,his total i_ greater than the available storage capacity (given
by c, - r,t. where I',t is the antount Of )Insent data on the disk left over from the
previous time step), then the difference between _hese two numbers is the amount of
data lost at satellite i at t. We assume that the same proportion of data is dropped
for each importance level, since once the disk is fldl the satellite is unable to ex-

amine any data sent to it and determine its priority. Define lut to be the amount
of data of importance j dropped at satellite i. Define the ('()st of dropping data of

importance j as wa. Then the objective function we wish to maximized is:

G = 1 _, F_, F.j '_'JG,- (1)

the importance-weighted percentage of data delivered to Earth {i.e., not dropped)
by the system as a whole.

The base routing algorithm has rough parallels with the shortest path style routing
algorithms commonly used in internet routing [2, 3, 7]. Each satellite / evaluates
a potential decision to send to satellite k by estimating the "headroom" of the
optim'aJ path to Earth beginning at k. The headroom represents the available room
for additional data, given the available disk room on each satellite and the capacity
of each link between them (the headroom replaces the traditional "'delay" concept

in data routing). Denote a path by a sequence of satellites p _= sk, ..... sk_ , where
sk_ represents the originating satellite and sk_ is the satellite which ultimately sends
the packet to Earth. Let the current amount of data being stored at satellite i bc
vi. Then the headroom H(p) of a path p is given by:

p--I

H(p) = min(min(b,, ,_ - )) (2)
q=l q' q+[ 'C_'_'q+l 12$'_q+l "

The presumption is thdt a path with high headroom should be favored over one
with low headroom, since the likelihood of data being dropped is lower (just a path

with low expected delay, s is favored over a path with high delays in traditional data
routing). Note that in a real system, a particular satellite i would not have access
to the precise storage amounts vj,j ¢ i at the current instant in time. Hence,
(:he headroom values would have to be estimated by satellites (in ways similar to
how delays are estimated in traditional data routing). In these experiments, we

supply each satellite with the vj's. Because we are interested in how to improve
the performance of the base algorithm, the estimation of the vj's would introduce
a systematic error that would not affect the ranking of the algorithms discussed
below.

It is straightforward to calculate the maximum headroom path from each satellite
to Earth using a version of Dijsktra's shortest path algorithm [3, 9]. One very
simple strategy would be for each satellite to send all of its data to the first satellite
along the maximum headroom path to Earth. This technique may not be optimal,
however, if the amount of data the satellite sends is large relative to the headroom
of the maximum headroom path. In particular, if the amount of data sent is larger
than the headroom, then it is quite likely that some of that data will be dropped,

unless more headroom happens to "clear up" fortuitously. It therefore seems wiser
to split the data up and send it through more than one satellite.



[],,cause of th,,miLit, y futL<'riou i'() Ol;,tintiz+', tra.(litiott;d r<)lLtill,_ a.lg<n'it.htns (e.g.,
shorwst pa,th a,lgorithms [2, :l, 9]) a.r+.'ill-mtiP,.l for this probh;m .:Lssu<'h w( dew_'lop
a, I);L_rlin,, routing algorithnt tll+_.t,aahlr+,ss,,s the [we<Is of this utility flmction. We
then intr<.hwe the concept t)f +'ghost" traffic, whi<'h distorts how the <l;_.ra.traffic
;q>l)(,;_rs to th,, sat(,llit(,s, a.n<[m, ht(:es th(,m to r.;tk(:actions that ar(, b(:n(,fi<:ial to th(:
sy,_r+:m as a wh()h:. The obj(,ctive th(:n reduces to setting this ghost traffic properly.

Although one may use search algorithms such as simulat(+<l anne_ding [I., 5, 8] to set
ill(' ghost trMfic, this problem tlaturaIly fen(Is itself to a [_.einforcenlent Learning
(HL) Ill, 161 approa(:h.

The use of Reinforcemertt Learning (RL) has proved successful in a multitude of

oprirnizittion problems I-l, (3, 12, L3, l-l, 18, t9 I. Furthermore, in a different context,
distributed RL where many agents independently attempt to maximize a world
utility (e.g, "'team games") h_ been successfully used to solve large decentralized
problems [(3, I0, 13, 15]. In this article we discuss a cotnbination of these two
concepts into a "guided" search algorithm that uses distributed RL to improve
upon both traditional team game solutions and traditional search algorithms.

In this article we present a search algorithm that combines team games and hill

climbing and apply it to minimizing loss of information on a constellation of com-
munication satellites. In Section 2 we detail the problem domain, and introduce the

concept of "ghost" traffic. Then, in Section ??, we present the bi-utility search al-
gorithm, and discuss both its motivation and applicability. Finally, in Section 3 we
present experimental results demonstrating the superiority of the bi-utility search
algorithm over both team games, simulated annealing and hill climbing algorithms.

2 Constellations of Satellites

One of the key challenges in the design of constellations of communication satellite
networks is the development of routing algorithms which minimize the amount of
data lost by the system as a whole. In such constellations, each satellite's stor-
age capacity, downlink bandwidth and available power is certain be limited. If
a satellite's disk becomes full, then any further incoming data will be lost. This

predicament can potentially be avoided if the satellite clears storage space by send-
ing some of its data to a neighboring satellite with more room on its disk and/or a
larger bandwidth link to Earth. In general, in order for the entire constellation to
minimize loss, data packets may need to be routed through several satellites before
ultimately being delivered to Earth. Further complicating this task is the fact that
different data packets may have different levels of importance. Routing decisions
should reflect this variability in priorities.

This task can be characterized by a well-specified global objective function (min-

imize importance-weighted amount of data dropped), and yet it is fundamentally
decentralized in nature, since it is infeasible to disseminate routing decisions from a

single, centralized source. Furthermore, some sort of adaptivity is clearly required,
since the complexity and potential non-stationarity of the problem is certain to
make any hand-designed scheme both brittle and undoubtedly sub-optimal.

2.1 Model Description

We model the evolution of the system as a sequence of discrete time steps. A con-
stellation of satellites is specified by the following set of parameters: Each satellite

s, has a storage capacity c, and a link capacity (bandwidth) bik to each other satel-
lite, where c, and bik are real numbers indicating the amount of data the satellite
can store and the amount of data the satellite can transmit to each other satellite



2.2 Baseline Routing Algorithm

L_,t H, be the hea, lroo,n of the max hea, lroom path from sitt_,llit_, i to Earth. Let

H,j be tile h(,a<iroott, of the optim;d path ()riginating at satellite i and with the first
hop being to satellite j. So H, a is given by

H, a = mirz(b,i,'l't.j )

The satellite at which data originates does not decide on the fltll path to Earth
taken by its packets; it simply decides on the first hop in the path and sends each

chunk to the appropriate satellite based on the H,/'s. (similarly, in traditional data
routing, a router only selects the first hop along the seemingly shortest path. based
on the delays). The routing is performed as follows: Let v,k be the amount of data
of importance k currently at satellite i, and Define

j" = argmaxj Hij.

If H,A. > v,_, then all Vik is sent to satellite j" and H,0. is updated by subtracting
V_k Off of the headroom estimate to reflect the fact that that much data has already
been sent to that satellite. If Hzj. < Vik, then an amount HLi- is sent to j" and

Hi.i. is updated to equal zero.

The whole procedure is then repeated until either (I) Vik = 0 or (2) Hi,j = OVj.
If the second condition occurs before all data has been routed, then the remaining

data is not sent anywhere and instead kept on the disk until the next iteration in
the hopes of routing it successfully th'n.

The routing algorithm factors in the importance levels of different data by perform-
ing the routing for the highest impo,tance data first, and then successively moving
down to lower and lower importance levels until either all the data has been routed
or all the headroom estimates are zero.

2.3 Routing with "Ghost" Algorithm

The routing scheme discussed above shares common features with the Shortest Path
Algorithms (SPAs) for routing [3, 9 I, though it significantly outperforms them in
this domain. This is not surprising as traditional shortest path algorithms do not
handle data of varying importance well (unless quality of service considerations are
included). Still, while it performs respectably on its own, it is susceptible to the
same phenomena that hamper SPAs in traditional routing [17]: the satellites do not

explicitly act to optimize G, and can therefore potentially work at cross-purposes.

We now introduce the concept of "ghost" traffic to alleviate these concerns, and
discuss several techniques for setting the levels of this traffic. Let us introduce
distortions to the headroom estimates Hij given by: 8_j. In other words, we set

and then perform the routing according to the perturbed headroom estimates. The

_',_s are free parameters to be determined via an optimization algorithm, and be-
cause their effects on the headroom is the same as that of actual data, we call them

"ghost" traffic. Our goal then is to find a set of a's such that the performance of
the system is substantially improved as compared to the performance of the base,

deterministic routing strategy.



[f wecollectall the ,_,j's int{_ a _ingl- w_ctor ,_', it becon.'s cb,ar that what we are

faced with is a multidinw.nsiotml optimization probh'm. Each particular choice of _5"

will yield a particldar glob;d performance G(,_).

3 Experimental Results

In this section we compare the performance of bi-utility search to both that of team

games, and that of hill climbing in the problem of setting the "'ghost" traffic level
to to minimize the provided worhl utility. In this context we associate an "agent"
with each d (i.e., amount of ghost traffic on a particular link). In this section we
present the results of the following 5 algorithms:

• Baseline: Algorithm outlined in Section 2.2: No learning.

• Team Games: Each agent uses RL to try to independently maximize

world utility.

• Random search: At each step, a random a vector is generated and that
vector is probabilistically "accepted" based on the world utility it provides

(simulated annealing).

• Random Hill Climbing: Similar to random search, but the new delta
vector is constrained to be one "bin" away from the old one.

• G-Based Hill Climbing: Similar to random hill climbing, but the explo-
ration step is guided by the RL estimates of the G rewards associated with
each action under consideration.
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Figure 1: (a) Performance of the various algorithms in the Satellites Communication
domain; (b) Exploration by Traditional and G-Guided Hill Climbing Algorithms.

Figure 1 (a) compares the performance of the five algorithms described above on a
problem with 20 satellites of moderate connectivity (150 8's), averaged over 100 runs
(the resulting error bars are too small to depict). The use of a team game approach
provides an improvement over the baseline algorithm. However, random search
shows that the team game strategy fails to take full advantage of the possible gains.
The hill-climbing results provide another significant jump over the gains achieved
through simulated annealing. While both hill climbing algorithms are superior to
team games, the G-guided search which incorporates components of both team
games and hill climbing clearly outperforms traditional hill-climbing.



Figur,,I (b) provi_les an _tnalysis on the rea.sons wily (',-guided rxploratiou is su-
perior to tr;t_litional hill climbing. The plots show the states gener;tted by the

ext)loration sr.eps of the tw_ hill dimbing algoritt,ms. The exploration, guided by
G clearly provides better states, which _lirectly tr:tnslates into higher performance.
Furthermore. the quality of the steps generated by the random hill clirnbing algo-
rithm's explor:tti_m show m) improvement ov,er time. In contrast, the? exploration
steps gener;m,_[ by the G-guided hill climbing ;dgorithm show ;t clear mlprovement.

4 Conclusion

Distributed search algorithms are crucial in dealing with large optimization problem,
particularly when a centralized approach is not only impractical but infeasible.
Team game solutions to this problem provide some relief, but often fall short of

the potential gains (e.g., due tO a lack of coordination among agents). Local search
algorithms provide another approach to this problem, but also fail to maximize

the gains, in that they do not exploit any knowledge acquired from the previously
explored states.

In this article we present an algorithm chat blends these two concepts into a global
utility directed search algorithm. We apply this algorithm to a distributed informa-
tion routing problem where the global objective is to minimize loss of importance-
weighted data. By accurately setting the "ghost" traffic introduced to prod the

agents to act to optimize world utility, this algorithm outperforms both traditional
hill climbing algorithms and team game algorithms.
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